费马、安德鲁·怀尔斯、法尔廷斯等大师都曾在这个领域做出贡献,著名的丢番图方程包括费马大定理、卡塔兰定理、bsd,其中前面两个已被证明,bsd难到变态,是七个千禧难题之一。
由沈奇完成证明的沃什猜想也属于丢番图系列方程,沃什猜想已在一年前更名为沃什定理,可被直接引用。
数论的另一个分支是解析数论,由高斯、黎曼、欧拉、狄利克雷、外尔等大师联手创立。
解析数论中的著名案例包括高斯三角和定理、欧拉五角数定理、狄利克雷的两个素数问题证明、外尔指数和公式、哥德巴赫猜想、黎曼猜想等等。
绝大多数著名的解析数论问题已被解决,仅剩哥德巴赫猜想和黎曼猜想有待攻克。
沈奇尝试从数论发展史的角度,更深刻的理解丢番图方程和解析数论。
强行进攻攻到吐,不如从历史上的数学大师们身上找点灵感吧。
第259章 还是方程
写一部带有专业理论色彩的数论史书,是一个浩大的工程,非朝夕之功。
沈奇有灵感就写几个字,他不着急,慢工出细活。
又到了周三的咖啡时间。
沈奇在数学系三楼咖啡厅和几位博士研究生聊天。
“乔纳斯,从去年九月到现在二月份,我第一次在咖啡厅见到你,要知道我从没缺席过任何一次周三咖啡时间。”沈奇说到。
乔纳斯也是一位博士研究生,今年是他呆在普林斯顿的第九个年头。
一年多前,沈奇来普大读研究生时,乔纳斯是博士研究生。
极有可能在几个月之后沈奇拿到hd,乔纳斯还是博士研究生。